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Abstract

We treat the problem of existence of a location-then-price equilibrium in the circle model
with a linear quadratic type of transportation cost function which can be either convex or
concave. We show the existence of a unique perfect equilibrium for the concave case when
the linear and quadratic terms are equal and of a unique perfect equilibrium for the convex
case when the linear term is equal to zero. Aside from these two cases, there are feasible
locations by the firms for which no equilibrium in the price subgame exists. Finally, we
provide a full taxonomy of the price equilibrium regions in terms of weights of the linear
and quadratic terms in the cost function.
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1. Introduction

Hotelling’s (1929) model of spatial competition provides an appealing frame-
work to address the nature of equilibrium in characteristic space and in geographic
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space. However, a major problem with the original model is that no configuration
of prices and locations by the firm is an equilibrium. In particular, the Hotelling
duopoly does not have equilibrium in prices for a wide range of locations by the
firms. The source of this non-existence is the presence of a discontinuity in the
seller’s demand which appears at those prices where one seller can attract the
whole market by slightly undercutting the price of his opponent (see d’Aspremont
et al., 1979). But the non-existence of a pure price equilibrium is not due to this
discontinuity itself, rather it is the failure of quasi-concavity of the profit function
which causes the problem.

To circumvent the problem of non-existence of equilibrium, Hotelling’s model
has been thoroughly worked through in terms of altering the basic assumptions in
the model. For example, various authors have considered different number of
firms, alternative transport cost and demand formulations, non-uniform consumer
densities over space, and many variations of the equilibrium concept. Contribu-
tions in this tradition have generally proposed specific convex transportation cost
functions.

This line of research has been followed by d’Aspremont et al. (1979) who show
the existence of an equilibrium for any location of the two firms when transporta-

2tion costs are quadratic, i.e. C(x) 5 ax , a . 0 where x is the distance between firm
and consumer. Then, Economides (1986) using the family of transportation cost

afunctions C(x) 5 x ,1 , a , 2, showed that the region of existence of equilibrium
is enlarged with the convexity of the consumers’ utility function (price plus travel
cost). Afterwards, Gabszewicz and Thisse (1986) showed that the combination of
linear and quadratic terms in a convex transportation cost function, i.e., C(x) 5

2ax 1 bx , a . 0, b . 0, does not help to restore a price equilibrium. For this family
of transportation costs Anderson (1988) has shown that when the solution concept
is extended to allow for mixed strategies there is no symmetric equilibrium
involving pure strategies if transport cost are not sufficiently convex. Moreover, he
shows that the convexity of transport costs is crucial in determining whether there
is excessive or insufficient diversity of products. More recently, Kats (1995)
assumed the circumference of circle as the product space (a representation first
used by Lerner and Singer, 1937) and has showed existence of equilibrium in the
modified model where transportation costs are assumed to be linear in the

1distance. The author points out that the non-existence of equilibrium in the
original Hotelling’s model does not result from the specification of linear transport
costs but it can be attributed to the fact that neither firm faces rivals on both sides
of its location.

Taking into account the above results, we here analyze the price and location

1For some locations of the firms there is no equilibrium in pure strategies of the price subgame in
this modified model At those locations, he considers the price equilibrium in mixed strategies But, if
strategies are restricted to be pure, then there is no equilibrium in the price subgame if the distance
between the firms is smaller than 1/4
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decisions of duopolists in a circle model when transportation costs are assumed to
2be linear-quadratic, i.e. C(x) 5 ax 1 bx where a . 0, b [ R. This specification

allows us to study how, if at all, the firm’s competitive decisions are modified by
the introduction of concave transportation cost as compared with convex ones. We
show that both cases are strongly related via a change of parameters. In particular,
taking concave transportation costs with a 5 2 b, we show the existence of a
symmetric equilibrium in pure strategies. Thus, in the circle model for a symmetric
equilibrium to exist, it is not required transport cost to be sufficiently convex.
Indeed, only two cost functions in the linear-quadratic family ensure existence of a

2 2perfect equilibrium in pure strategies. These are C(x) 5 bx and C(x) 5 bx 2 bx
where b . 0. For any other cost function in that family there are feasible locations
by the firms for which no equilibrium in pure strategies in the price subgame
exists. However, contrary to the linear market case, the non-existence of a pure
price equilibrium occurs for locations that are too close together. Furthermore, at
any given pair of locations, each merchant gains (or does not lose) from moving

2away as far as possible from the other. Finally, using only the convex linear
quadratic transport costs, we compute exactly the regions of price equilibrium and
study how they expand with the relative weight of the quadratic and linear terms in
the cost functions. The regions of price equilibrium in the concave case (with
concave transportation costs) can be obtained, easily, from the previous computa-
tions using a change of parameters.

The paper is organized as follows. Section 2 contains the model. Section 3 is
devoted to the study of existence of a perfect equilibrium. In Section 4 we provide
a full taxonomy of the regions of existence of equilibrium in the price subgame.
Section 5 concludes. Finally, some of the proofs are contained in Appendix A.

2. The model

In a circular market of circumference of length 1 there are two sellers located at
x and x , x , x [ [0,1), who charge mill prices p and p , respectively. Both1 2 1 2 1 2

sellers supply a homogeneous product at zero marginal cost. A continuum of
consumers are spread uniformly with unit density on the circumference. Each
consumer purchase one unit of good. A consumer located at x, x [ [0,1),
purchasing a product from seller i pays the cost of transporting the good from x toi

x. Consumers will buy from the seller with the lower delivered or full price, mill
price plus transportation cost. Transportation costs are assumed to be non-negative,
increasing, and linear quadratic in the (relative) distance. Here we consider two

1 2possible transportation cost functions: C (z;a,b) 5 az 1 bz , a $ 0, b . 0, and

2For the linear market Anderson (1988) shows that equilibrium in prices may exist when firm
locations are close but not when they are slightly further apart; see Proposition 2 in his paper

3



2 2 1C (z;a,b) 5 az 2 bz , a $ 0, b . 0. Notice that C is a convex function whereas
2C is concave.
The two-stage location–price game is modelled as follows: In the first stage of

the game the two sellers choose simultaneously locations x and x in the1 2

circumference. Without loss of generality we may assume x 5 0 and 0 # x # 1/2.1 2

In the second stage they simultaneously set prices p and p , at which they offer to1 2

sell their product to consumers.
1For p , and x given, if the transportation cost function is C then the demand2 2

of seller 1 is given by

1D 5 1 if p [ (0,I ]11 1 1

(a 1 b)( p 2 p ) b 2 a2 11 ]]]]]] ]]D 5 1 if p [ I ,If g12 1 1 2 2b2bx (a 1 b(1 2 x ))2 2

(2a 1 b)( p 2 p ) 12 11 1 ]]]]]]] ]D (x , p , p ) 5 D 5 1 if p [ [I ,I ]1 2 1 2 13 1 2 322(a 1 bx )(a 1 b(1 2 x ))2 2
(a 1 b)( p 2 p ) b 1 a2 11 ]]]]]] ]]D 5 1 if p [ [I ,I ]14 1 3 42b2bx (a 1 b(1 2 x ))2 2

1D 5 0 if p [ [I ,`)15 1 4

where I 5 p 2 x (a 1 b(1 2 x )), I 5 p 2 x (a 1 bx ), I 5 p 1 x (a 1 bx ) and1 2 2 2 2 2 2 2 3 2 2 2
1 1I 5 p 1 x (a 1 b(1 2 x )). As usual, D (x , p , p ) 5 1 2 D (x , p , p ) are the4 2 2 2 2 2 1 2 1 2 1 2

demand functions for firm 2.
2Let us denote by D (x , p , p ) to the demand of seller 1 when the transport cost1 2 1 2

2function is C . In De Frutos et al. (1998) it is shown that for any convex function
C with C(0) 5 0 there exists a concave one T with T(0) 5 0 such that

C TD (x , p , p ) 5 D (x , p , p ) where i 5 1,2, i.e. the demand of each firm is thei 2 1 2 i 2 1 2

same under C and T. The intuition behind this result is based on the fact that C
behaves for small values as T does for large values. For the linear quadratic case,
this result implies that if a and b are real and positive with a . b then

2 1D (x , p , p ;a,b) 5 D (x , p , p ;a 2 b,b). Notice that the demand for the concave2 1 2 2 1 2

case follow from the demand in the convex case through a change in the parameter
values in the cost function.

3. Equilibrium

We now study the subgame perfect equilibrium of the two-stage non-co-
operative game in which firms select a position at the first stage and subsequently
set their price.

We denote by B ( p , p ) 5 p D ( p , p ), i ± j, the profit function of seller i,i i j i i i j

i 5 1,2. A Nash Equilibrium in the price subgame in which the location choice is
1* * * * *fixed, is a pair ( p , p ) such that p maximizes B ( p , p ) on R and p1 2 1 1 1 2 2
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1*maximizes B ( p , p ) on R . Then, a subgame perfect price-location equilibrium2 1 2

* * *is defined as a pair [( p ,0),( p ,x )] such that1 2 2

* * * * * *(i) p 5 p (0,x ) and p 5 p (0,x ),1 1 2 2 2 2

* * * * * * *(ii) B x , p (0,x ), p (0,x ) $ B x , p (0,x ), p (0,x ) ;x [ [0,1] i 5 1,2.s d s di 2 1 2 2 2 i 2 1 2 2 2 2

Anderson (1986) have proved that for a general transportation cost function,
C(z), which is strictly convex, increasing and satisfies C(0) 5 0, a necessary
condition for the existence of a subgame perfect price–location equilibrium is
C9(0) 5 0. Thus, for a convex linear quadratic transport cost, a necessary condition
for existence of equilibrium is that the linear term be zero. We now show that this
condition is sufficient as well for the linear quadratic transport cost. Moreover, we
now also give a necessary and sufficient condition for existence of a perfect
equilibrium for the concave case.

Proposition 1. (i) If the transportation cost function is convex and linear
quadratic there exists a subgame perfect price–location equilibrium if and only if
a 5 0. Moreover, if a 5 0 then the equilibrium is unique and it is given by

* *x 5 1/2 and p 5 p 5 b /4.2 1 2

(ii) If the transportation cost is concave and linear quadratic there exists a
subgame perfect price–location equilibrium if and only if a 5 b. Moreover, if

* *a 5 b then the equilibrium is unique and it is given by x 5 1/2 and p 5 p 52 1 2

b /4.

Proof. (i) Anderson (1986) has shown that a 5 0 is a necessary condition for a
subgame perfect equilibrium to exist. When a 5 0 the demand functions are given
by

1D (x , p , p )1 2 1 2

21 if p # p 2 b(x 2 x )1 2 2 2

( p 2 p ) 12 1 2 2]]]] ]5 1 if p [ p 2 b(x 2 x ), p 1 b(x 2 x )f g1 2 2 2 2 2 222bx (1 2 x )2 25
20 if p $ p 1 b(x 2 x )1 2 2 2

1 1and D (x , p , p ) 5 1 2 D (x , p , p ). Thus, the profit functions are strictly2 2 1 2 1 2 1 2

concave and for any given location by firm 2, x [ [0,1 /2], there exists a unique2

* *pair of equilibrium prices, p 5 p 5 bx (1 2 x ). Now, easy computations show1 2 2 2

that there exists a unique subgame perfect price–location equilibrium at x 5 1/22

* *and p 5 p 5 b /4. (ii) The second part of this result follows easily from the fact1 2
2 1that D (x , p , p ;a,b) 5 D (x , p , p ;a 2 b,b) and part (i). h2 1 2 2 1 2
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In the circle model the existence of equilibrium in pure strategies does not rely
on how convex is the transportation cost function. Rather than this, in order to
ensure the existence of equilibrium we need the cost function to be either
sufficiently convex or sufficiently concave. What is special about the linear case? If
the transportation cost is linear consumers care as much for the price they have to
pay as for the distance they have to travel. Furthermore, firms perceive price and
location as two strategic substitutes. Thus, for some locations by firm 2, it is
possible and profitable for firm 1 to undercut its price by exactly x to capture the2

whole market. This undercutting price increases as x decreases. In the other2
2 2extreme cases (C(z) 5 bz and C(z) 5 b(z 2 z )) location and price are strategic

complements, i.e. each firm reacts to increases in the distance between the firms by
increasing its equilibrium price. Hence, when firms are very close to each other the
equilibrium price is so small that no firm has incentives to undercut it so as to
capture the entire market.

4. Equilibrium regions

The non-existence of a subgame perfect equilibrium in our model of product
differentiation can be attributed to the non-concavity of the profit functions. More
precisely, we will show that the profit function is double-peaked so that for some
locations of the firms there is no price equilibrium.

Let seller 1 be located at 0 and let seller 2 be located at x . Furthermore, let us2
1 3assume that C(z) 5 C . Anderson (1986) showed that if a price equilibrium exists

for a given location x it has to be given by2

(a 1 bx )(a 1 b(1 2 x ))2 2
]]]]]]]* * *p 5 p 5 p (x ) 51 2 2 2a 1 b

Notice that if an equilibrium exists it has to be symmetric. Therefore,
* * * *B (x , p , p ) 5 0.5p (x ), for i51,2. Moreover, looking at p (x ) it is straight-i 2 1 2 2 2

*forward to see that x 50.5 is the unique maximum of p (x ) whenever b±0.2 2

Since we have explicit expressions of the profit functions we can study the
regions of equilibrium (i.e. the range of x for which an equilibrium in the price2

subgame exists). We can also study how these regions change with the parameter
values of the transport cost function. More precisely, we will show that these

2regions go from x $ 1/4 to x $ 0 as we go from C(z) 5 az to C(z) 5 bz through2 2
2the family C(z) 5 az 1 bz . The following proposition contains these results.

1 2Proposition 2. Let C(z) 5 C (z) 5 az 1 bz and let a 5 b /a. The regions of price
equilibrium are (see Fig. 1)

3 2Notice that the results for C(z) 5 C can be derived from the results in the convex case by using the
change in the parameter values introduced in Section 2
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1
](i) [z (a), ] if 0 # a # 1.4 2

1
](ii) [z (a), ] if a . 1,3 2

1
]]]where z (a) 5 and z (a) is given by4 3(4 1 a)

]2 2 Œ 3 22 (1 1 2a 1 a ) 1 (2 1 3a 1 a ) a
]]]]]]]] if 2(a 1 3a 1 2a 2 1) ± 03 22(a 1 3a 1 2a 2 1)z (a) 53 H 3 21
] if 2(a 1 3a 1 2a 2 1) 5 0.4

Proof. See Appendix A. h

Remark 1. We can observe from the expressions for z (a) and z (a) that if a → `4 3
1
](b . 0,a → 0) then the price equilibrium region tends to the interval [0, ]. On the2

other hand if a → 0 (a . 0,b → 0) then the price equilibrium region tends to the
1 1
] ]interval [ , ]. These results correspond to the limit cases of the quadratic4 2

transportation cost (a 5 0) and linear transportation cost (b 5 0). Furthermore,
we observe that the regions of price equilibrium change monotonically.

5. Conclusions

We have shown that for our family of transportation costs the results for the
concave case follow from the result in the convex case through a change in the
parameter values in the cost function. Consequently, there exists a perfect

2 2location–price equilibrium in the circle model if C (z) 5 bz 2 bz that corresponds
1 2to the equilibrium for the cost function C (z) 5 bz . This equilibrium involves

maximal differentiation. This result implies that the existence of a perfect
equilibrium in the circle model is not related to the convexity of the cost function.

In the circle model, as compare with the linear model, firms face symmetric
conditions: each faces a rival on both sides of its location. This symmetry is in the
basis for the equivalence result between the concave transport cost and the convex
one. Moreover, if transportation costs are not linear then each firm is strictly better
off the further away is from its rival. Thus, in the circle model the unique pattern
of product differentiation is always maximal differentiation. If transportation costs
are linear this pattern is an equilibrium as well but there are other equilibria which
involve less differentiation between the firms.

One solution to the non-existence problem is to impose location restrictions
between the firms, in particular, to impose a minimal distance constraint between
them. We have shown that this distance must go from 1/4 (for the linear transport
cost case) to 0 (for the quadratic transport case). Another solution is to allow for
mixed strategies in the price subgame. However, mixed strategies solutions
demand great computational ability of the agents and may seem implausible.
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Appendix A. Proof of Proposition 2

Let seller 1 be located at 0 and let seller 2 be located at x . From Anderson2

(1986) it is known that if a price equilibrium exists for a given location x it has to2

be given by

(a 1 bx )(a 1 b(1 2 x ))2 2
]]]]]]]* *p 5 p 51 2 2a 1 b

Consequently, a price equilibrium exists when seller 2 is located at x if and only2

if

* * *B (x , p , p ) $ B (x , p , p ) ; p1 2 1 2 1 2 1 2 1

* * *B (x , p , p ) $ B (x , p , p ) ; p2 2 1 2 2 2 1 2 2

*Let us confine our analysis to seller 1. If seller 2 charges p the profit function of2

seller 1 is

1 *B 5 p if p [ (0,I ]11 1 1 1 *p (a 1 b)( p 2 p ) p (b 2 a)1 2 1 11 ]]]]]] ]]] * *B 5 1 if p [ I ,If g12 1 1 22b2bx (a 1 b(1 2 x ))2 2
*p (2a 1 b)( p 2 p ) p1 2 1 11 1 ]]]]]]] ]* * *B (x , p , p ) 5 B 5 1 if p [ [I ,I ]1 2 1 2 13 1 2 322(a 1 bx )(a 1 b(1 2 x )) 2 2

*p (a 1 b)( p 2 p ) p (b 1 a)1 2 1 11 ]]]]]] ]]] * *B 5 1 if p [ [I ,I ] 14 1 3 42b2bx (a 1 b(1 2 x ))2 2

1 *B 5 0 if p [ [I ,`)15 1 4

* * * * * *where I 5 p 2 x (a 1 b(1 2 x )), I 5 p 2 x (a 1 bx ), I 5 p 1 x (a 1 bx )1 2 2 2 2 2 2 2 3 2 2 2

* *and I 5 p 1 x (a 1 b(1 2 x )).4 2 2 2
1 *It is easy to see that B (x , p , p ), i 5 2,3,4, are strictly concave functions in1i 2 1 2
1 * * *the variable p and that B (x , p , p ) is a strictly decreasing function on [I ,I ].1 14 2 1 2 3 4

* *Thus, the profit function can have at most two local maxima: one lying on I ,If g1 2
1* * *and another on [I ,I ]. The first derivative of B (x , p , p ) has a zero at2 3 12 2 1 2

2 2a 1 b(1 2 x ) a(a 1 b) 1 2x (2a 1 ab 1 b )f gs d2 2] ]]]]]]]]]]]]]p 5p 51 1 2(2a 1 b)(a 1 b)
8



] * *Notice that p may not always lie on [I ,I ]. Finally, the first derivative of1 1 2
1 * * * *B (x , p , p ) gives a local maximum at p 5 p which always lies on [I ,I ].13 2 1 2 1 1 2 3

1 * *Therefore, all the possible graphics of B (x , p , p ) for which p 5 p is a global1 2 1 2 1 1

maximum are those drawn in Fig. 2.
We now discuss each case separately to obtain conditions on x that will ensure2

the existence of an equilibrium in prices.

1 1] ]* * * * *Case 1. See Fig. 2; p [ [I ,I ] and B (x , p , p ) $ B (x ,p , p ).1 1 2 13 2 1 2 12 B 1 2

]For p to lie on this interval the following two conditions must hold:1

¯ *p 5 p 1 x ((a 1 b(1 2 x )) $ 01 2 2 2

¯ *p 2 p 1 x (a 1 bx ) # 01 2 2 2

After some computations it is possible to show that conditions above are satisfied
if and only if the following two conditions hold:

22(1 1 3a 1 a )x 2 (1 1 a) $ 0 (A.1)2

2 2 2 22a(3 1 3a 1 a )x 1 (1 1 5a 1 a )x 2 (1 1 a) # 0 (A.2)2 2

1 1 ]* * *Since B (x , p , p ) $ B (x ,p , p ) must also hold we get the following13 2 1 2 12 B 1 2

additional condition

2 3 2 2 24(21 1 2a 1 3a 1 a )x 1 4(1 1 a) x 2 (1 1 a) $ 0 (A.3)2 2

Since a is positive it is possible to get the regions where conditions Eq. (A.1) and
Eq. (A.2) are satisfied. On the other hand, by studying the zeroes of the
polynomial in x in condition Eq. (A.3) (taking into account the possible zero in2

the coefficient of the quadratic term) it is deduced that Eq. (A.3) is always satisfied

Fig 2 Profit functions
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when x is bigger than z (a), where z (a) is the zero of the polynomial when the2 3 3
2 3coefficient of the quadratic term is not zero, i.e. (21 1 2a 1 3a 1 a ) ± 0.

Finally, we show that z (a) is smaller than z (a). Based on this considerations it is3 2

straightforward to show that the conditions of Eqs. (1)–(3) hold simultaneously if
and only if the two following conditions hold:

x [ [z (a), z (a)] if 0 # a # 12 1 2

x [ [z (a), z (a)] if a . 12 3 2

where z (a) is given in Proposition 2 and3

1 1 a
]]]]]z (a) 51 22(1 1 3a 1 a )

]]2 2 Œ2 (2 1 5a 1 3a ) 1 (2 1 3a 1 a ) 1 1 8a
]]]]]]]]]]]]]z (a) 52 24a(3 1 3a 1 a )

] ]* * *Case 2. See Fig. 2; p [⁄ [I ,I ] with p , p 2 x (a 1 b(1 2 x )) and1 1 2 2 2 2
1 1* * * *B (x , p , p ) $ B (x , p 2 x (a 1 b(1 2 x ), p ).13 2 1 2 12 2 2 2 2 2

These two conditions hold if and only if:
22(1 1 3a 1 a )x 2 (1 1 a) , 0 (A.4)2

(4 1 a)x 2 1 $ 0 (A.5)2

The two conditions are satisfied simultaneously if and only if a # 1 and x [21
]]][z (a),z (a)], where z (a) 5 .4 1 4 (4 1 a)

] ]* * *Case 3. See Fig. 2; p [⁄ [I ,I ] with p . p 2 x (a 1 bx ). It is easy to see that1 1 2 2 2 2

this holds if and only if Eq. (A.2) does not hold. Therefore, there will be an
1
]equilibrium if x [ [z (a), ].2 2 2

Thus, the price equilibrium regions are given by:

• If 0 # a # 1 they are

1 1
] ][z (a),z (a)] < [z (a), ] < [z (a),z (a)] 5 [z (a), ],1 2 2 4 1 42 2

• If a . 1 they are

1 1
] ][z (a),z (a)] < [z (a), ] 5 [z (a), ].3 2 2 32 2

10



Fig. 1. Equilibrium regions.

Adding all these conditions together we get the result. h
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